This post is to show how to write math expression by using MathJax syntax , you can also use it as an example of writing. Now, let’s start looking at MathJax and expressions.
What is MathJax?
MathJax is a javascript display engine for rendering TEX or MathML-coded mathematics in browsers without requiring font installation or browser plug-ins. Any modern browser with javascript enabled will be MathJax-ready.
Some basic syntax
To type a math expression, surround the expression like below:
\[\text{\$expression\$}\]
The ~
acts as a space in Mathjax expression. Surround the expression by two $
will make the expression center:
\[x~y\]
Examples
Sum
\[\sum_{i=0}^{n^3} i^3=\frac{n(n+1)}{2}\]
1
2
3
| $$
\sum_{i=0}^{n^3} i^3=\frac{n(n+1)}{2}
$$
|
Alpha symbol
\[\alpha^2+\beta^2=\gamma^2\]
1
2
3
| $$
\alpha^2+\beta^2=\gamma^2
$$
|
\[\Gamma^2+\Omega^2 = \Delta^2\]
1
2
3
| $$
\Gamma^2+\Omega^2 = \Delta^2
$$
|
Logarit
\[x_3^5 = log_3(34)\]
1
2
3
| $$
x_3^5 = log_3(34)
$$
|
Small ()
\[\left( expression \right)\]
1
2
3
| $$
\left( expression \right)
$$
|
Square root
\[\left(\frac{\sqrt{xyz}}{b} = \sqrt{a}\right)\]
1
2
3
| $$
\left(\frac{\sqrt{xyz}}{b} = \sqrt{a}\right)
$$
|
Big ()
\[\biggl( ~ \bigr) ~ \biggr)\]
1
2
3
| $$
\biggl( ~ \bigr) ~ \biggr)
$$
|
\[\bigcup \bigcap \int_x^3 \iiiint \idotsint\]
1
2
3
| $$
\bigcup \bigcap \int_x^3 \iiiint \idotsint
$$
|
Fraction
\[\cfrac{s}{a}\]
\[\sqrt[3]{x^3} = |x|\]
1
2
3
| $$
\sqrt[3]{x^3} = |x|
$$
|
Limit
\[\lim_{x \to 0}{(x+4)}\]
1
2
3
| $$
\lim_{x \to 0}{(x+4)}
$$
|
Trigonometry
\[\sin^2 \theta + \cos^2(\theta) = 1\]
1
2
3
| $$
\sin^2 \theta + \cos^2(\theta) = 1
$$
|
Less, equal, greater
\[2 \lt 3;~ 3 \leqslant 3; ~ 3 \neq 2\]
1
2
3
| $$
2 \lt 3;~ 3 \leqslant 3; ~ 3 \neq 2
$$
|
\[-b \pm \sqrt{b^2 - 4ac} \over 2a\]
1
2
3
| $$
-b \pm \sqrt{b^2 - 4ac} \over 2a
$$
|
Times
\[x \times y\]
\[x \to y; x \rightarrow y; x \leftarrow y; x \Leftarrow y; x \mapsto y; x \land y ; x \lor y\]
1
2
3
| $$
x \to y; x \rightarrow y; x \leftarrow y; x \Leftarrow y; x \mapsto y; x \land y ; x \lor y
$$
|
\[x \star y; x \ast y; x \oplus y; x \circ y; x \approx y; x \sim y ; x \forall y; x \top y;\]
1
2
3
| $$
x \star y; x \ast y; x \oplus y; x \circ y; x \approx y; x \sim y ; x \forall y; x \top y;
$$
|
Infinity
\[\infty\]
Derivative
\[\partial x \over \partial y\]
1
| $$\partial x \over \partial y$$
|
\[a \equiv c \pmod b\]
1
2
3
| $$
a \equiv c \pmod b
$$
|
\[a_1 + \ldots \cdots a_n\]
1
2
3
| $$
a_1 + \ldots \cdots a_n
$$
|
\[cos\phi ~ cos\epsilon ~\]
1
2
3
| $$
cos\phi ~ cos\epsilon ~
$$
|
\quad
Instead of using ~~~
, we can use \quad
.
\[a \quad b\]
Pure text
\[\text{hihihi}\]
1
2
3
| $$
\text{hihihi}
$$
|
Widehat
\[\widehat{xy}\]
Vector
\[\overrightarrow{v} + \overrightarrow{w} = 1\]
1
2
3
| $$
\overrightarrow{v} + \overrightarrow{w} = 1
$$
|
Differential equation
\[\dot x + \ddot x = 0\]
1
2
3
| $$
\dot x + \ddot x = 0
$$
|
\[\{x\}\]